Lesson Plan (2022-23)

September to December-2022

Name of the Assistant Professor- Dr. Amit Kumar

Subject- Mathematics

Class	B.A. 1 st Sem	B.A. 3 rd Sem	B.A. 3 rd Sem	B.C.A.
				3 rd Sem
Paper/ Month	Algebra	Advanced	Partial	Computer
	_	Calculus	Differential	Oriented
			Equations	Numerical
			_	Methods
September	Symmetric,	Continuity,	Partial differential	Computer
(Section -1^{st})	Skew –	Sequential	equations :	Arithmetic:
	symmetric,	continuity,	Formation, order	Floating - point
	Hermitian and	properties of	and degree, Linear	representation
	Skew - Hermitian	continuous	and non - linear	of numbers,
	matrices,	functions,	partial differential	arithmetic
	Elementary	Uniform	equations of the	operations with
	operations on	continuity, Chain	first order :	normalized
	matrices, Rank of	rule of	Complete	floating - point
	a matrix, Inverse	differentiability.	Solution, Singular	numbers and
	of a matrix,	Mean value	solution, General	their
	Linear	theorems; Rolle's	solution, Solution	consequences,
	dependence and	theorem and	of Lagrange's	significant
	independence of	Lagrange's mean	linear equations,	figures. Error
	rows and columns	value theorem and	Charpit's general	in number
	of matrices, Row	their geometrical	method of	representation -
	rank and column	interpretations.	solution.	inherent error.
	rank of a matrix,	Taylor's theorem	Compatible	truncation,
	Eigen values,	with various form	systems of first	absolute,
	eigen vectors and	of remainders,	order equations.	relative.
	the characteristic	Darboux	Jacobi's method.	percentage and
	equation of a	intermediate value		round - off
	matrix, Minimal	theorem for		error. Iterative
	polynomial of a	derivatives,		Methods:
	matrix, Cayley	Indeterminate		Bisection , False
	Hamilton theorem	forms.		position,
	and its use in			Newton -
	finding inverse of			Raphson
	a matrix.			method.
				Iteration
				method,
				discussion of

				convergence,
				Bairstow's
		T'' 1	T' ('1	method.
October	Applications of	Limit and	Linear partial	Solution of
$(\text{Section} - 2^{\text{nd}})$	matrices to a	continuity of real	differential	simultaneous
	system of linear	valued functions	equations of	linear equations
	(BOUI	OI two variables.	second and nigher	and ordinary
	nomogeneous and	differentiation	orders, Linear	amerentian
	homogeneous)	Total differentiale	homogonoous and	equations:
	nonnogeneous)	Composite	nonogeneous and	Gauss-
	Theorems on	functions and	homoganaous	mathods
	consistency of a	implicit functions	equations with	niethous,
	system of linear	Change of	constant	conditioned
	equations Unitary	variables	coefficients	equations
	and Orthogonal	Homogeneous	Partial differential	refinement of
	Matrices Bilinear	functions and	equation with	solution. Gauss
	and Quadratic	Euler's theorem on	variable	- Seidal
	forms.	homogeneous	coefficients	iterative
		functions. Taylor's	reducible to	method. Euler
		theorem for	equations with	method, Euler
		functions of two	constant	modified
		variables.	coefficients, their	method, Taylor
			complimentary	- series method,
			functions and	Runga - Kutta
			particular	methods,
			Integrals,	Predictor -
			Equations	Corrector
			reducible to linear	methods.
			equations with	
			constant	
			coefficients.	
November	Relations between	Differentiability	Classification of	Interpolation
(Section -3^{ra})	the roots and	of real valued	linear partial	and
	coefficients of	functions of two	differential	Approximation:
	general	Variables.	equations of	Polynomial
	polynomial	Schwarz and	second order,	interpolation:
	equation in one	Young's theorem.	Hyperbolic,	Newton,
	Variable.	theorem Maxima	parabolic and	Lagranges,
	polynomial	Minima and	emptic types,	tables
	polynomial equations baying	saddle points of		Approximation
	conditions on	two variables		of functions by
	roots Common	L'agrange's		Taylor Series
	roots and multiple	method of		rayior series.
	roots	multipliers		
			1	

	Transformation of		Reduction of	Chebyshev
	equations.		second order	polynomial: First kind
			differential	Second kind
			equations to	and their
			Canonical (relations,
			Normal) forms	Orthogonal
			and their solutions	properties.
			, Solution of	
			linear hyperbolic	
			equations,	
			Monge's method	
			lor partial	
			equations of	
			second order.	
December	Nature of the	Curves: Tangents,	Cauchy's problem	Numerical
(Section -4^{th})	roots of an	Principal	for second order	Differentiation
	equation.	normals,	partial differential	and integration:
	Descarte's rule of	Binormals, Serret	equations.	Differentiation
	signs. Solutions of	- Frenet formulae .	Characteristic	formulae based
	cubic equations	Locus of the	equations and	on polynomial
	(Cardan's	Current of	characteristic	lit, pitialis in
	Riquedratic	Spherical	order partial	Trapezoidal
	equations and	curvature Locus	differential	and Simpson
	their solutions.	of centre of	equation. Method	Rules.
		spherical	of separation of	Gaussian
		curvature,	variables :	Quadrature .
		Involutes,	Solution of	
		Evolutes, Bertrand	Laplace's equation	
		curves. Surfaces:	, Wave equation (
		Tangent planes,	one and two	
		one parameter	dimensions),	
		tamily of surfaces,	Diffusion (Heat)	
		Envelopes.	equation (one and	
			in Cartesian	
			coordinate system	